
Eur. Phys. J. B 39, 219–227 (2004)
DOI: 10.1140/epjb/e2004-00184-y THE EUROPEAN

PHYSICAL JOURNAL B

Two-step spin conversion and other effects in the atom-phonon
coupling model

J.A. Nasser1,a, K. Boukheddaden2, and J. Linares2
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Abstract. We study an atom-phonon coupling model introduced recently for spin-conversion phenomenon.
The originality of this model, performed on a linear chain of atoms, is that the elastic force constant values
of the spring linking two atoms depends on their electronic states. This leads to introduce naturally in
the chain long- and short-range interactions, which appear respectively like a Zeeman and an exchange
interactions. The exchange-like interaction can be ferro-, antiferro- or equal to zero. The effects of long-
range interactions have already been studied. Here we study those of the short-range interaction. Some
parts of the chain phase diagram are analysed and the main features of the experimental behaviours of
spin conversion compounds are qualitatively reproduced.

PACS. 63.20.Kr Phonon-electron and phonon-phonon interactions – 63.50.+x Vibrational states in
disordered systems – 64.60.-i General studies of phase transitions

1 Introduction

The first case of spin conversion (SC) reported in the lit-
erature is due to Cambi in 1931 [1]. Since then, many ex-
perimental and theoretical studies have been done [2,9].
Recently, the effects of hydrostatic pressure [10], applied
magnetic field [11] and light [12] have been studied on
(SC) compounds. In addition, spin transition phenomenon
has been observed on compounds with a strong one dimen-
sional character [13].

The (SC) compound is constituted of transition metal
ions in an octahedral environnement. Due to the metal-
lic ion ligand field and spin pairing energy, the transition
metal energy diagram displays a fundamental level with a
spin value less than that of the first excited level. For ex-
ample, for iron(II) complexes, the low spin value is S = 0
and the high spin one is S = 2. Moreover, for these com-
plexes, the fundamental energy level is non degenerated,
whereas the degeneracy of the excited energy level is the
product of the spin and orbital degeneracies. When the
orbital moment is completely quenched, the degeneracy
of the excited level becomes equal to (2S + 1).

Mössbauer-effect studies and magnetic susceptibility
measurements allow to study the thermal variation of the
high-spin fraction, nHS, that is the fraction of transition
metal in the high spin level. This parameter deviates from
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a Boltzmann population law and can display two differ-
ent behaviours: (i) either nHS increases continuously with
increasing temperature and does not show a thermal hys-
teresis; (ii) or nHS shows with increasing temperature a
discontinuity and a thermal hysteresis, which is charac-
teristic of a first order phase transition (called spin tran-
sition). Recently, it has been shown that the first order
phase transition can disappear and reappear when hydro-
static pressure is applied [13]. In some compounds [14], a
“two-steps” spin-conversion can be observed with or with-
out first order phase transition. In such spin conversion,
the high spin fraction increases very smoothly in a range
of temperature of few kelvin.

Let ∆ be the distance in energy between the funda-
mental and the first excited level of the transition metal.
The experimental studies show that nHS is near of the unit
for a temperature value Tsat less than ∆ (typically, ∆ is
near of two or three times kTsat, where k is Boltzmann
constant). So, it is clear that there is a mechanism which
helps the transition metal ions to go from the low spin
level to the high spin one. Which is this mechanism?

Different mechanisms have been proposed [4] to [8],
[15] and [16]. For example, in the Ising-like model [15], an
exchange-like interaction is introduced, but the physical
origin of this interaction is not specified. Moreover the
exchange-like constants and the degeneracy of the high-
spin level are determined in order to have a good fit with
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the experimental results. Hence, in order to reduce the
value of the parameter Tsat, a very high value is given to
the degeneracy of the high level, typically 1000. This high
value cannot be due to the above mentioned electronic
degeneracy alone. So, degeneracy related to the vibrations
of the atoms complexes is assumed.

Recently [18], starting from the experimental results
obtained by Sorai and Seki [17], Nasser assumed that
acoustic phonons are this driving force. He proposed a 1-D
model in which spin-conversion units, represented by sim-
ple atoms with fictitious two-states spins, are coupled by
springs such as the elastic force constant of a spring has
three values depending on the electronic states of both
atoms linked by the spring. The three values are chosen
such as to favour the high spin level. So, the thermal varia-
tion of the high spin fraction results from the competition
between the electronic parameter ∆ which favours the low
spin level, and the acoustic phonons of the lattice.

In his paper, Nasser shows that phonon system creates
a field-like on each atom and an exchange-like interaction
between two first-neighbouring atoms. This exchange-like
interaction can be ferro-, antiferro- or even equal to zero.
Only the case where the exchange-like interaction is zero
has been studied [18]. In that case, the field-like leads
the chain to have a spin conversion with or without a
first order transition depending on the respective values
of elastic force constant. Moreover, the ratio between the
parameters ∆ and Tsat is acceptable even for the electronic
degeneracy alone.

In this paper, we look for the new results due to the
antiferro- exchange-like interaction. By the same varia-
tional method as that used in [18], we can separate the
chain Hamiltonian in two parts: a phonon Hamiltonian
and a spin one. In order to preserve the character 1-D
of the system, the spin Hamiltonian is studied with the
transfer matrix method.

The aim of this study is to investigate the chain phase
diagram and to obtain for the high spin fraction thermal
variation behaviours which look like to those obtained by
experimental studies.

In Section 2 we present the model and the chain Hamil-
tonian, in Section 3 we describe the study method used, in
Section 4 we give the obtained results and the last section
is devoted to discussion and conclusion.

2 The model and the chain Hamiltonian

Let us consider a linear chain of identical atoms having
two energy levels. The degeneracy of the fundamental elec-
tronic level (a) is ga = 1 and that of the excited level (b)
is gb = r. We call ∆ the difference in energy between the
two levels. Neighbouring atoms i and j (= i ± 1) are as-
sumed to interact with an elastic force constant eij , which
is equal to λ when both atoms are in level (a), ν when
they are both in (b) and µ when one is in level (a) and
the other in level (b). We assume that

λ > µ > ν. (1)

To each atom i, (i = 1 to N), we associate a fictitious-
spin σ̂i which has two eigen-values σi = ±1. Eigen-
value −1 (resp.+1) corresponds to electronic level (a)
(resp. (b)).

The total Hamiltonian of the chain is the sum:

H = Hspin + Hphonon (2)

where the spin Hamiltonian Hspin is

Hspin =
N∑

i=1

∆

2
σ̂i (3)

and Hphonon, the phonon Hamiltonian, is

Hphonon = Ec + Ep. (4)

Ec is the total kinetic energy of the chain and Ep its elastic
potential energy. The latter can be written as

Ep =
N∑

i=1

1
2
ei,i+1q

2
i (5)

with
qi = ui+1 − ui (6)

and

ei,i+1 =
λ + 2µ + ν

4
+ 2h0(σ̂i + σ̂i+1) + 2J0σ̂iσ̂i+1 (7)

with
h0 =

ν − λ

8
(8)

and
J0 =

λ − 2µ + ν

8
. (9)

In these expressions, ui is the displacement of the ith atom
from its equilibrium position which we assume to be in-
dependent of the electronic states of the atoms. More-
over we assume the periodic condition, up+N = up for
p = 1, 2, . . . , N .

The chain potential energy, Ep, can be decomposed as

Ep = V0 + V1 + V2 (10)

with

V0 =
N∑

i=1

λ + ν + 2µ

8
q2
i (11)

V1 =
N∑

i=1

h0

[
q2
i−1 + q2

i

]
σ̂i (12)

and

V2 =
N∑

i=1

J0q
2
i σ̂iσ̂i+1. (13)

The energy V1 is the sum of one-spin interactions, it has
Zeeman-like form. Each spin σ̂i is submitted to an effective
field hi given by

hi = h0

[
q2
i−1 + q2

i

]
. (14)
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From the hypothesis ν < λ, this field favours the eigen
value +1 ((b) level).

The energy V2 is the sum of two-spin interactions, it
has an exchange-like form. The exchange parameter Jii+1

between spin σi and σi+1 is

Jii+1 = J0q
2
i (15)

The sign of this parameter is the same as that of the ex-
pression J0. For example, when Jii+1 is negative, V2 is a
ferromagnetic-like interaction.

In a previous article [18], the case V2 = 0, that is J0 =
0, has been studied. In the present work we study the
influence of the V2 term on the chain phase diagram.

3 Effective elastic force constant
K and transfer matrix

3.1 Self-consistent equations

If we replace the elastic force constant ei,i+1 by an effective
elastic force constant K which does not depend on the
chain sites, then the thermal mean value of the parameter
qi does not depend on the site i. So, the field, hi (Eq. (14)),
created by the phonon on spins is uniform along the chain,
and moreover the exchange parameter, Ji,i+1 (Eq. (15)),
is the same between any couple of first neighbours spins.
We then obtain a spin Hamiltonian which can be studied
exactly by the transfer matrix method [19].

We can obtain the best expressions for the effective
elastic constant, K, for the effective uniform field, h, and
for the effective exchange-like interaction, J , by a varia-
tional method [20]. The variational Hamiltonian H0 is
given by:

H0 = H0s(h, J) + H0ph(K) (16)

with

H0s =
N∑

i=1

−hσ̂i +
N∑

i=1

−Jσ̂iσ̂i+1 (17)

and

H0ph(K) =
N∑

i=1

p2
i

2m
+

N∑
i=1

K

2
q2
i . (18)

As the parameters h and J do not depend on the sites, the
Hamiltonian H0s can studied exactly. Using the transfer
matrix method we obtain for F0s, the free energy related
to H0s,

F0s = −NkT
ln r

2
− NkT ln A (19)

with
A = exp (βJ) coshβhr +

√
B (20)

and
B = exp (2βJ) sinh2 βhr + exp (−2βJ). (21)

In the above relations, kT is the thermal energy, β = 1
kT

and
hr = h + kT

ln r

2
(22)

The relation (22) takes into account the degeneracy of the
excited level (or b level).

In the case of the Hamiltonian H0s the thermal mean
values of σ̂i, and that of σ̂iσ̂i+1 are independent on the
site i. So, we introduce the parameters m and s defined by

m = 〈σ̂i〉 for i = 1, N (23)

and
s = 〈σ̂iσ̂i+1〉 for i = 1, N. (24)

It is known that the transfer matrix method leads to equa-
tions

m =
exp(βJ) sinh βhr√

B
(25)

and

s = 1 − 2 exp(−2βJ)
A
√

B
. (26)

The expression of F0ph, the free energy related to
the phonon Hamiltonian, H0ph(K), is well known. It is
given by

F0ph = kT
∑
α

ln
(

2 sinhβ
�ωα

2

)
(27)

where
∑

α is the sum over phonon normal modes. The
frequencies are given by

ωα = ωM (K) | sin
απ

N
| (28)

where α = 0,±1,±2, ....,±(N
2 − 1), N

2 . The maximum fre-
quency is given by

ωM (K) = 2
√

K

ma
(29)

where the parameter ma is the atoms mass.
The variational free energy is then

F̃ = F0 + 〈H − H0〉0 (30)

where
F0 = F0s + F0ph (31)

and 〈H−H0〉0 is the thermal mean value calculated by us-
ing the density matrix associated to H0 at temperature T .

The minimization of F̃ versus the variational parame-
ters h, J and K, leads to the equations:

K =
2µ + λ + ν

4
+ 4h0m + 2J0s (32)

h = −∆

2
− 2h0

K

〈H0ph(K)〉T
N

(33)

J = −J0

K

〈H0ph(K)〉T
N

. (34)

Up to now, we have only taken into account one
phonon polarisation. For simplicity, we assume that the
phonon energy is independent of the polarisation. Then,
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taking into account the three polarisations, we must mul-
tiply by three the phonon energy in the expressions of h
and J . So, equations (33) and (34) become

h = −∆

2
− 6

h0

K

〈H0ph(K)〉T
N

(35)

J = −3
J0

K

〈H0ph(K)〉T
N

. (36)

Inserting the expressions of h, J and K given by equa-
tions (32, 35) and (36) in F̃ , we obtain F , the chain free-
energy corresponding to the approximation made in this
study. The expression of F is given in Appendix A.

When the parameters λ, µ, ν and r are fixed, F ap-
pears as a function of ∆, T, s and m. However, as m and s
verify two self consistent equations then the free energy F
is only function of ∆ and T . The expression of the free
energy differential and that of the chain entropy are given
in Appendix A.

3.2 Chain isotherms study

To numerically solve the self consistent equations, we take
�ωM (λ) as the unit of energy and we introduce the follow-
ing reduced parameters:

• the reduced temperature:

t =
kT

�ωM (λ)
(37)

• the dimensionless electronic excitation energy

δ =
∆

�ωM (λ)
(38)

• the elastic force constant ratio

x =
ν

λ
. (39)

We have assumed that 0 < x < 1.
• the dimensionless parameter y defined by:

µ =
λ + ν

2
+

λ − ν

2
y (40)

It is clear that the parameter y is the ratio

y =
J0

h0
. (41)

Due to the assumption made on the elastic constant values
(Eq. (1)) the parameter y must verify the conditions

−1 < y < 1. (42)

We have studied the chain isotherms in the ∆-m plane.
From the isotherms study we can deduce the chain phase
diagram in the δ-t plane or in the δ-y plane.

In this article we have restricted the study of the chain
phase diagram for the case where the exchange-like inter-
action is anti-ferro, that is for

µ <
λ + µ

2
⇐⇒ y < 0. (43)

This case is interesting because there is then a compe-
tition between the Zeeman-like interaction which makes
the spin parallel and the anti-ferro exchange-like interac-
tion which makes them anti-parallel. Moreover, we have
limited the chain phase diagram study to the case x = 0.2
for which the Zeeman-like interaction leads the chain to
display a first order phase transition at any temperature
value [18].

4 Results

4.1 Chain phase diagram at 0 K

At 0 K, the self-consistent equations can be solved exactly
which provides a guide in the choice of the parameters
values for the numerical study at T �= 0 K. At 0 K three
solutions can be found:

a) m = 1 and s = 1, corresponding to a pure high-spin
phase (HS). The elastic constant of this phase is equal
to ν, and its energy, E+, is given by

E+ = 3〈H0ph(ν)〉0 K + N
∆

2
. (44)

b) m = −1 and s = 1, corresponding to a pure low-spin
phase (LS). The elastic constant of this phase is equal
to λ and its energy, E−, is given by

E− = 3〈H0ph(λ)〉0 K − N
∆

2
. (45)

c) m = 0 and s = −1, corresponding to a pure antiferro
phase (AF). The elastic constant of this phase is equal
to µ and its energy, E±, is given by

E± = 3〈H0ph(µ)〉0 K. (46)

In these expressions, 〈H0ph(ν)〉0 K, 〈H0ph(λ)〉0 K and
〈H0ph(µ)〉0 K are the zero-point energies of the chain with
the respective elastic force constants ν, λ and µ.

We can show that when N , the number of chain atoms,
tends to infinity the zero-point energy of a periodic chain
is given by

〈Hph(e)〉0 K = N
2
π

�ωM (e)
2

. (47)

In the above relation e is the elastic force constant of the
chain and ωM (e) is its maximum phonon frequency.

Between the three solutions, the stable one is that
which has the lowest energy value. So, at 0 K, the chain
phase diagram can be deduced from the energy (E) dia-
gram studied in the E-∆ plane.
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Since we have assumed ν < µ < λ, then, for ∆ = 0,
the value of E+ is less than those of E− and of E±, and
the value of E± lies between those of E+ and of E−.

As shown in the relation (44, 45), E+ increases linearly
and E− decreases linearly as ∆ increases. As for E±, it
does not depend on ∆ but decreases when the parameter µ
decreases.

From the above results, we deduce that, when ∆ = 0,
the chain is in the (HS) phase. When ∆ increases two cases
must be considered:

– a) if the value of µ is near of that of λ, then, for ∆ = 0,
the value of E± is near of that of E−. In this case, the
chain displays a first order phase transition between
the (HS) and the (LS) phases. Indeed, at some partic-
ular value of ∆, which we denote by ∆1, the energies of
the two phases are equal. And, when ∆ < ∆1 the (HS)
solution is the stable phase while the stable phase is
the (LS) solution for ∆ > ∆1. The expression of ∆1 is
obtained from the relation

E+(∆1) = E−(∆1). (48)

Using (47), we find

∆1 =
3
π

(�ωM (λ) − �ωM (ν)) (49)

– b) if the value of µ is near of that of ν, then, for ∆ = 0,
the value of E± is near of that of E+. In this case,
as ∆ increases, the chain displays a first order phase
transition between the (HS) and the (AF) phases at
the particular value ∆2 followed by a first order phase
transition between the (AF) and the (LS) phases at
the particular value ∆3. The expressions of ∆2 and
∆3 verify the equations

E+(∆2) = E±(∆2) (50)

and
E±(∆3) = E−(∆3). (51)

Using (47), the values ∆2 and ∆3 are then given by

∆2 =
6
π

(�ωM (µ) − �ωM (ν)) (52)

and
∆3 =

6
π

(�ωM (λ) − �ωM (µ)). (53)

It is clear that the values ∆2 and ∆3 depend on the value
of the parameter µ. One can verify that both values are
equal to ∆1 for a particular value of µ, which we designate
as µs. Using the relations (52) or (53), the value of µs is
given by

�ωM (µs) =
�ωM (λ) + �ωM (ν)

2
. (54)

Using the relation (29) in (54), we obtain√
µs

λ
=

1 +
√

x

2
. (55)

Fig. 1. Chain phase diagram at 0 K for x = 0. The full lines
are the coexistence curves of two phases. The coordinates of
the triple point τ are δτ = 0.52787 and yτ = −0.19098. For
y = 0.0, δ = 0.52787. The parameter δ is the reduced ligand
field parameter, x is the ratio of the elastic constant values for
HS-HS and LS-LS pair, y characterizes the difference between
elastic constant value for the pair HS-LS and the mean value
of the elastic constants HS-HS and LS-LS.

One can show that µs is a threshold value. Indeed, if µ >
µs, the chain is that of case a), and if µ < µs it is in the
case b). Moreover, since the three phases energies are equal
for µ = µs and ∆ = ∆s, then the chain phase diagram
displays a triple point at 0 K.

From the relations (40) and (55), the value ys of the
reduced parameter y for µ = µs is

ys =
−(1 + x) + 2

√
x

2(1 − x)
(56)

for x = 0.2, ys = −0.19098.
In Appendix A we give the expressions of the reduced

values δi (i=1,2,3) in terms of the reduced parameters x
and y.

The previous results are summarized in the chain
phase diagram at 0 K, shown in Figure 1. It is worth
noticing that r, the excited level degenerency value, does
not play any role in this phase diagram.

4.2 Chain phase diagram for T �= 0 K

For T �= 0 K, we have studied the chain isotherms by
solving numerically the self consistent equations (25, 26).
We have limited ourselves to study the cases x = 0.2,
r = 5 and y < 0.

Here, we first give a general property verified by the self
consistent equations, and then we present some aspects of
the chain phase diagram.

From the equations (22, 35) and (36) it appears that
fixing the value of the temperature and that of the phonon
parameters λ, µ and ν, the parameters hr and J do not
change if we replace the set of values (∆ = ∆1 and r = r1)
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Fig. 2. Chain phase diagram at t = 0.05, for x = 0.2 and N =
2000. The line is the (HS) phase-(LS) phase coexistence curve.
The coordinates of the critical point C are tC = 0.05, yC =
−0.2889 and δC = 0.5361. Below the transition line the phase
is (HS), above it, the phase is (LS), but not a pure (LS) phase
(see the text). The parameter t is the reduced temperature.

by any set (∆ = ∆2 and r = r2) such as

kT ln r1 − ∆1 = kT ln r2 − ∆2. (57)

Therefore, the solutions of the self-consistent equa-
tions (25, 26) are the same for the set (∆1, r1) and the
set (∆2, r2) related by the relation (57). So, studying
the chain isotherms for r = r1, allows us to deduce the
isotherms for any value of r by using the transforma-
tion (57).

For t = 0.02, the chain phase diagram in the δ-(−y)
plane is similar to that at 0 K. However, it is no more the
case at higher temperature values.

The chain phase diagram, in the δ- (−y) plane, at t =
0.05, is shown in Figure 2. This phase diagram displays
only one first order phase transition line ended by a critical
point C. Let yC, δC and tC be the coordinates of this
critical point.

In Figure 2, let δM and −yM be the coordinates of a
point M of the transition line, and suppose δ to be in-
creased, maintaining (−y) constant at the value −yM. For
δ values less than or greater than δM the self consistent
equations solution is a unique set of two values one for m
and one for s. Let (m1, s1) be the self consistent equations
solution for the value δ− just less than δM, and let (m2,
s2) be the solution for the value δ+ just greater than δM.
As the point M is on a first order phase transition line,
m1 �= m2 and s1 �= s2. We have verified that m1 > m2

for any position of the point M on the transition line. For
this reason, we say that the phase below the transition
line is a (HS) phase, and that above the transition line is
a (LS) phase. However, while the phase below the transi-
tion line is nearly a pure (HS) phase, with m1 > 0.72 and
s1 > 0.448 for 0 < (−y) < (−yC), it is not the case for the
phase above the transition line. Indeed,

– for 0 < (−y) < 0.11, this phase is quite a pure (LS)
phase with m2 < 0 and s2 > 0;

Fig. 3. Line of the chain critical points in the t-(−y) plane;
x = 0.2 and N = 2000. Let −yC and tC be the coordinates of
each critical point. The minimum value of (−yC) is higher than
0.1 but very close to this value. The dashed area goes from y =
0 to the minimum value of (−yC). For a fixed value of (−y), the
chain phase diagram in the δ-t plane doesn’t display a critical
point in the dashed zone, but, in the white zone, such phase
diagram displays two critical points denoted C1 and C2 in the
figure. Their coordinates are respectively tC1 = 0.255, yC1 =
−0.10027, δC1 = 1.0556 and tC2 = 0.282, yC2 = −0.10027 and
δC2 = 1.1344.

– for 0.15 < (−y) < 0.2, this phase looks like an (AF)
phase, with s2 < 0 and m2 � 0;

– for 0.28 < (−y) < yC, this phase can be considered as
a (HS) phase less ordered than the (HS) phase below
the transition line. Indeed, in this case, m2 and s2 are
positive.

We have followed the thermal variations of the criti-
cal values (−yC) and δC. The value δC is a monotonous
increasing function of the temperature. As for (−yC),
when the temperature increases, this value first decreases,
reaches a minimum value and then increases. The vari-
ations of (−yC) vs. tC, near the minimum is shown in
Figure 3.

We have verified by numerical calculation that, in the
range of temperature where (−yC) decreases, that is at
low temperature, the chain free-energy is positive and de-
creases, while, in the range where (−yC) increases, the
chain free-energy is negative and decreases. So we can say
that the thermal behaviour of (−yC) is due to the com-
petition between internal energy and entropy terms of the
chain free-energy.

From Figure 3, we deduce that when we fix the value
of the parameter (−y) at a value less than the minimum
value of (−yC) the chain phase diagram in the δ-t plane
does not display a critical point. However, if the value of
(−y) is larger than this minimum value, this phase di-
agram displays two critical points called C1 and C2 in
Figure 3.

The chain phase diagram in the δ-t plane for y =
−0.10027 is shown in Figure 4.
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Fig. 4. Chain phase diagram for y = −0.10027; x = 0.2 and
N = 2000. The full line is the coexistence curve of the (HS)
and (LS) phases. This curve is interrupted between the critical
points C1 and C2 which are those of Figure 3. For δ values
between δC1 and δC2 the chain doesn’t display a first order
phase transition.

Fig. 5. Values of ∆m, the discontinuity in m, along the co-
existence curve of Figure 4. When the transition temperature
value tends to the critical temperature values tC1 or tC2 , ∆m
tends to zero. When the transition temperature value is very
small, ∆m is large, but when the temperature transition in-
creases, being larger than tC2 , ∆m tends to a constant value
near of 0.2.

The slope of the coexistence curve is given by the
Clapeyron equation

d(∆
2 )

dT
=

∆S

∆m
(58)

where ∆S and ∆m are the discontinuities at the transition
of the entropy and of the parameter m respectively. The
values of ∆m for the different temperature values of the
coexistence curve of Figure 4 are shown in Figure 5.

Using reduced parameters δ and t in the Clapeyron
equation we deduced ∆S, the value of the entropy discon-
tinuity per mole at the transition

∆S =
R

2
∆m

dδ

dt
(59)

where R is the perfect gas constant. Using the above rela-
tion and the results contained in Figures 4 and 5, one can
calculate ∆S. In our numerical study, we can calculate the
entropy of each solution of the self-consistent equations,
and then, we deduce the entropy discontinuity without
using the above relation.

4.3 Thermal variation of the high-spin fraction

In the experimental studies, the physicists measure the
thermal variation of the high-spin fraction which is related
to the “magnetization” m through the relation

nhs =
1 + m

2
. (60)

To have, in our study, the thermal variation of the high-
spin fraction we fix the values of the model parameters λ,
µ, ν, ∆ and r and we solve the self-consistent equations
for different temperature values.

When the spin conversion takes place through a first
order phase transition our numerical study shows the exis-
tence of thermal hysteresis. However, the calculated ther-
mal hysteresis can’t be compared to the observed one. So,
in this study, we only display the stable solutions, and
then the first order phase transition appears through a
discontinuity in the spin fraction at the transition tem-
perature.

Using the chain phase diagram displayed in Figure 4,
we predict that the thermal variation of the high spin
fraction is continuous for a δ value between δC1 and δC2

and is discontinuous for a δ value less than δC1 or bigger
than δC2 . Those results are shown in Figure 6.

When the parameter y is small enough, the chain phase
diagram displays in the δ-t plane, an anti-ferro phase, that
is a phase where s < 0 and m ≈ 0. This phase is limited
by two first order transition lines each ended by a crit-
ical point. Consequently, if we choose for δ a value just
greater than the δ values of the above mentioned critical
points, we obtain for the high spin fraction thermal vari-
ation the behaviour shown in Figure 7. This behaviour
looks like that called “unusual spin-transition anomaly”
or “two-step spin conversion” by H. Köppen et al. [14].

5 Discussion and conclusion

The phase diagram of Figure 4 is surprising. However, it
allows to understand the results obtained by Yann Garcia
et al. [13] in studying pressure effect on a 1D spin conver-
sion compound. Their results are the following: the ther-
mal variation of nHS displays a thermal hysteresis at at-
mospheric pressure, and, as the applied pressure increases,
the hysteresis width decreases, disappears and again reap-
pears with a constant width.

If we assume that the ligand field parameter ∆ (or δ)
increases when the applied pressure increases, we can in-
terpret the experimental results of Garcia et al. by saying
that the first order phase transition disappears and reap-
pears when the compound parameter ∆ increases, which
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Fig. 6. Thermal variation of the high spin fraction for x = 0.2,
r = 5, y = −0.10027, N = 2000 for different values of δ. For
δ = 0.847, that is δ < δC1 , symbol (×), the chain displays a
first order transition at the temperature value of 0.1769. For
δ = 1.095, that is δC1 < δ < δC2, (full line), the spin conversion
is continuous. For δ = 2.0, that is δ > δC2 , symbol (o), the
chain displays again a first order transition. The discontinuities
in nHS are indicated by arrows.

is the results showed in Figure 6. In other words, one can
say that the value of δ in the compound studied by Garcia
et al. is equal to a value less than the critical value δC1 at
atmospheric pressure, belongs to the range (δC1 , δC2) at
4.1 kbar and is greater than δC2 when the applied pres-
sure is greater than or equal to 5 kbar. It is worth noticing
that, in the model, for δ > δC2 , the discontinuity in m at
the transition is nearly constant. This result, shown in
Figure 5, may be the reason why the observed hysteresis
width has a constant value when the applied pressure is
greater than or equal to 5 kbar.

For δ = 0.847 and r = 5, (symbol ×) in Figure 6,
we have obtained, by solving the self-consistent equations,
0.1769 for the reduced value of the transition temperature,
∆m = 0.218 for the discontinuity in m and ∆S = 0.264 R
for the discontinuity in the chain entropy. It is worth notic-
ing that using Figures 4 and 5 and the Clapeyron equation
we can deduce the value of the entropy discontinuity at
the transition. For example, if we choose the value 0.1
for the reduced transition temperature, we obtain by this
way 0.8 R for the entropy discontinuity at the transition.
(The energy unit of the model, �ωM(λ), is of the order of
1000 K, so a reduced temperature value of 0.1 corresponds
to 100 K).

For r = 15 and δ = 0.847, we have obtained by solving
the self-consistent equation the values 0.1167 for the re-
duced transition temperature and 0.906 R for the entropy
discontinuity at the transition.

For the spin transition shown in Figure 6 (symbol ×)
we have calculated ∆S12, the chain entropy variation be-
tween a temperature value t1, less than the transition tem-
perature, and a temperature value t2, greater than it. We

Fig. 7. Thermal variation of the high spin fraction for x =
0.2, r = 5, y = −0.20, δ = 0.606 and N = 2000. In the
“plateau region”, the chain is in an anti-ferro phase. This high
spin thermal variation is similar to the experimental curves
called “unusual spin-transition anomaly” or “two-steps” spin
transition.

have found: ∆S12 = 1.7 R for t1 = 0.158 and t2 = 0.195;
and ∆S12 = 2.5 R for t1 = 0.137 and t2 = 0.212.

Garcia et al. [13] have obtained 32.2 Jmol−1 K−1 or
3.87 R for the entropy variation. This value cannot be
compared with the entropy discontinuity values obtained
in the present model because of the observed thermal hys-
teresis.

From our study, we can conclude that the present
atom-phonon coupling model allows us to reproduce qual-
itatively the thermal behaviours of the high spin frac-
tion observed in spin conversion compounds. However, as
shown in Figures 6 and 7, the range of temperature con-
taining the thermal variation of the high spin fraction is
too large compared to the observed temperature range.
We think that taking into account the thermal variation
of the parameter ∆ can reduce the calculated temperature
range.

In this study, working on a 1-D system, we have been
able to use the transfer matrix method to investigate the
role of the exchange-like interaction. But if we try to apply
this atom-phonon coupling model on a 2-D or 3-D system,
we will be obliged to replace the transfer matrix method
by a molecular field theory which is less correct. However,
in this case, this study on a 1-D system could help for
choosing the model parameters values.

As an extension of the present work, we project in
a near future to study the dynamical properties of this
model.

Finally, one of us, J.A. Nasser is indebted to L. Chassagne for
helpful discussions.
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Appendix A

A.1 Chain thermodynamic function

In the used approximation, F , the chain free-energy is

F = −NkT

(
lnr

2
+ ln A

)
+ 3kT

∑
α

ln
(

2 sinhβ
�ωα

2

)

+ N

(
∆

2
+ h

)
m + NJs. (61)

The meaning of the different parameters are contained in
Section 3.1.

A.2 Chain free-energy differential and entropy

Taking the infinitesimal variation of F , we find

dF = −SdT + Nmd
∆

2
(62)

where S, the chain entropy, is given by

S = Sspin + Sph (63)

with

Sspin = −N
h m + Js

T
+ Nk ln A + Nk

ln r

2
(64)

and

Sph =
3〈H0ph(K)〉

T
− 3k

∑
α

ln
(

2 sinhβ
�ωα

2

)
. (65)

The spin entropy is that of N spin (±1) interacting with
first neighbour exchange interaction and submitted to the
applied field h. The phonon entropy is that of a periodic
chain with elastic force of constant K.

A.3 Transition lines equations at 0 K

In order to do calculation, we use the reduced parameters
introduced in (37) to (40). The expressions of the reduced
values δi for i = 1, 2, 3 are the following:

δ1 =
3
π

(
1 −√

x
)

(66)

δ2 =
6
π

(√
1 + x

2
+

1 − x

2
y −√

x

)
(67)

and

δ3 =
6
π

(
1 −

√
1 + x

2
+

1 − x

2
y

)
. (68)

References

1. L. Cambi, A. Cagnasso, Atti. Accad. Naz. Lincei 13, 809
(1931)

2. E. König, G. Ritter, S.K. Kulshreshtha, Chem. Rev. 85,
219 (1985)
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